

INDIAN SCHOOL AL WADI AL KABIR

Class: XII	Department: SCIENCE 2021 – 22	Date of submission:	
	SUBJECT : PHYSICS	24.01.22	
Worksheet No:11	Topic: DUAL NATURE OF RADIATION AND	'ION AND Note:	
	MATTER.		
WS WITH ANS.		A4 FILE FORMAT	
NAME OF THE STUDENT-	CLASS & SECTION	ROLL NO.	
Multiple choice type	questions;		
(a) Blue (c) Violet 3. When radiation is i the electron is 1.8×1 (a) 6×10^5 m/s (c) 10^6 ms ⁻¹ 4. Two photons, each of the metal is 4.5 eV (a) one electron (b) two electron (c) more than (d) not a single 5. The maximum veloc of work function φ , is c = speed of light and (a) $\left[\frac{2(hc + \lambda \varphi)}{m\lambda}\right]^1$ 6. The photoelectric w is (a) 4125 Å (c) 3000 Å	ving has minimum stopping potential? (b) Yellow (d) Red ncident on a photoelectron emitter, the stopping potentia 0^{11} C/kg, the maximum velocity of the ejected electron (b) 8 x 10^5 m/s (d) $1.8 x 10^6$ ms ⁻¹ of energy 2.5 eV are simultaneously incident on the me , then from the surface of metal n will be emitted with energy $0.5 eV$ ons will be emitted with energy $0.25 eV$ two electrons will be emitted e electron will be emitted be emitted by light of wavelength λ inci- [h = Planck's constant, m = mass of electron] 1/2 (b) $\frac{2(hc-\lambda \varphi)}{m\lambda}$	is etal surface. If the work function ident on the surface of a metal off wavelength for this surface	
		1 P a g e	

	-	aving work function ϕ_0 is 2	λ_0 . What is the threshold wavelength for		
a metal whose work fur	to is $\phi_0/2?$				
(a) 4 λ_{o}		(b) $2 \lambda_0$			
(c) $\lambda_o/2$		(d) $\lambda_o /4$			
			V, $2 \cdot 0$ e V and $5 \cdot 0$ e V. According to		
_	metals which will	-	adiation of wavelength 4100 Å is/are		
(a) none		(b) A on	•		
(c) A and B only		(d) B and	l c only		
10. The wavelength of 1	matter wave is inde	-			
(a) mass		(b) veloc	ity		
(c) momentum		(d) charge			
11. The photoelectric ef					
(a) Corpuscular		(b) Wave theory			
· · · · ·	etic theory	(d) quantum theory			
	articles have the sa	me de-Broglie wavelength	. What is same for both of them?		
(a) Energy					
(b) Time period					
(c) Frequency					
(d) Momentum					
Assertion and Reason					
DIRECTIONS. In each of the following questions, read the two statements and choose if					
	(A) both Assertion and Reason are true and the Reason is correct explanation of the Assertion.				
		it the Reason is not a corre	ct explanation of the Assertion.		
(C) Assertion is true and					
(D) both, Assertion and					
			is incident on photo-sensitive material.		
		doubled, the photo current			
-			of light and frequency of light.		
(a) A	(b) B	(c) C	(d) D		
14. Assertion: Photoele	ectric effect demon	strates the wave nature of l	ight.		
		proportional to the frequen	-		
(a) A	(b) B	(c) C	(d) D		
	· · /		ower than an optical microscope.		
			electron gun with velocity 500 m/s is		
much less than 500 nm.		e electrons ennitied from an	refection gun with velocity 500 m/s is		
		(a) C	(d) D		
(a) A	(b) B	(c) C			
		1 of a neutron when, its kin	etic energy is k is λ . Its wavelength is 2λ		
when its kinetic energy		. 1.			
		proportional to square root			
(a) A	(b) B	(c) C	(d) D		
	Broglie wavelength	equation has significance	for any microscopic or submicroscopic		
particles.					
			mass of the object if velocity is constant.		
(a) A	(b) B	(c) C	(d) D		
Short answers type qu					
	_		ngth and emit photons of longer		
		nces which absorb photon	s of larger wavelength and emit light		
of shorter wavelength.					
Ans. In the first case, th	e energy of the inc	cident photon on a material	is high and the energy of emitted		
photon is low.					
			2 Page		

In the second case, the energy of the incident photon is low and the energy of emitted photon is high. It means in second case the material has to supply the energy for the emission of photon. This cannot happen for stable substances.

19. Do all the electrons that absorb a photon come out as photoelectrons?

Ans. No, most electrons get scattered into the metal by absorbing a photon. Only a few come out of the surface of metal whose energy becomes greater than the work function of metal.

20. Why is this fact (two photon absorption) not taken into consideration in our discussion of the stopping potential?

Ans. The probability of absorbing 2 photons by the same electron is very low. Hence such emission will be negligible.

21. On what principle is an electron microscope based?

Ans. An electron microscope is based on de-Broglie hypothesis. According to it, a beam of electrons behaves as a wave which can be converged or diverged by magnetic or electric field lenses like a beam of light using optical lenses.

22. A proton and an electron have same velocity. Which one has greater de-Broglie wavelength and why?

Ans. De-Broglie wavelength $\lambda = h/mv$, i.e., De-Broglie wavelength of electron is more than that of proton.

Numerical;

23. Calculate the

(a) momentum, and

(b) de Broglie wavelength of the electrons accelerated through a

potential difference of 56 V.

Solution: -

$$\frac{1}{2}mv^2 = eV$$

$$v^2 = \frac{2eV}{m}$$

:
$$v = \sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 56}{9.1 \times 10^{-31}}}$$

After this For de-Broglie momentum, can be calculated. wavelength

24. What is the

(a) momentum,

(b) speed, and

(c) de Broglie wavelength of an electron with kinetic energy of 120 eV.

 $=\sqrt{19.69 \times 10^{12}} = 4.44 \times 10^{6} \text{ m/s}$

Solution; - same as previous question,

25. The wavelength of light from the spectral emission line of sodium is

589 nm. Find the kinetic energy at which

(a) an electron, and

(b) a neutron, would have the same de Broglie wavelength. Solution; -

$$K = \frac{1}{2}m_e v^2 \qquad \dots (1)$$

$$\begin{aligned} \lambda &= \frac{h}{m_s v} \\ & K &= \frac{1}{2} \frac{m_s^{1/2}}{\lambda^2 m_s^2} = \frac{h^2}{2\lambda^2 m_s} \qquad ...(3) \\ & = \frac{(6.6 \times 10^{-34})^2}{2 \times (589 \times 10^{-9})^2 \times 9.1 \times 10^{-31}} \\ & = 6.9 \times 10^{-25} \text{ J} \end{aligned}$$
way KE of neutron can be calculated.
26. What is $= \frac{6.9 \times 10^{-29}}{1.6 \times 10^{-99}} = 4.31 \times 10^{-6} \text{ eV} = 4.31 \mu\text{eV} \qquad \text{the de-Broglie wavelength of mass 0.040 kg traveling at the speed of 1.0 m/s, and (2) a dualt of mass 0.060 kg moving at a speed of 1.0 m/s, and (2) a dualt of mass 0.060 kg moving at a speed of 1.0 m/s, and (2) a dualt particle of mass 1.0 \times 10^{-9} \text{ kg drifting with a speed of 2.2 m/s?} \end{aligned}$
(a) $\lambda = \frac{h}{mv}$
 $= \frac{6.6 \times 10^{-34}}{0.040 \times 1000} = 1.65 \times 10^{-39} \text{ m} \text{ same way other 2 can be calculated.}$
27. An electron and a photon each have a wavelength of 1.00 nm. Find (3) their momenta.
(4) their momenta.
(5) the energy of the photon, and (2) to their momenta.
(6) $\mu = \frac{h}{3}$
 $\therefore \mu = \frac{6.63 \times 10^{-34}}{1 \times 10^{-9}} = 6.63 \times 10^{-25} \text{ kg m s}^{-1}$
(7) $K = \frac{1}{2} \frac{h^2}{\pi}$
 $\therefore F = \frac{6.63 \times 10^{-34}}{1 \times 10^{-9} \times 1.6 \times 10^{-19}} = 2.415 \times 10^{-19} \text{ J}$
 $= \frac{2.415 \times 10^{-19}}{1.6 \times 10^{-19}} = 1.51 \text{ eV}$
ANSWERS OF MCQs; -1, (a), 2, (d), 3, (d), 4, (d), 5, (c), 6, (c), 7, (b), 8, (b), 9, (c), 10, (d), 11, (d) 12, (d) 13, (d), 14, (d), 15, (c), 16, (d), 17, (a)
(A) (PERPARED BY:MR. RANDHIR KUMAR GUPTA (CHECKED BY; HOD - SCIENCE)